3,029 research outputs found

    Spectral Statistics and Luminosity Function of a Hard X-ray Complete Sample of Brightest AGNs

    Full text link
    We investigated the statistics of the X-ray spectral properties of a complete flux-limited sample of bright AGNs from HEAO-1 all-sky catalogs to provide the bright end constraint of the evolution of AGN hard X-ray luminosity function (HXLF) and the AGN population synthesis model of the X-ray background. Spectral studies have been made using ASCA and XMM-Newton observation data for almost all AGNs in this sample.Comment: PTPTex v0.88, 2 pages with 4 figures, Proceedings of the "Stellar-Mass, Intermediate -Masss, and Supermassive Black Holes" in Kyoto, Japa

    Core structure of EAS in 10(15) to 10(17) eV

    Get PDF
    With the use of Akeno calorimeter, the attenuation of particles in concrete is analyzed as the function of the shower size of 10 to the 5th power to 10 to the 7th power. The attenuation length does not depend much on the shower size but depends a little on the shower age. The average value is approx. 150 g/sq cm for s = 0.5 to 0.85 and approx. 40 g/sq cm for s = 0.85 to 1.15. These values and their fluctuations are consistent with the equi-intensity curves of extensive air showers (EAS)

    Properties of the cosmological filament between two clusters: A possible detection of a large-scale accretion shock by SuzakuSuzaku

    Get PDF
    We report on the results of a SuzakuSuzaku observation of the plasma in the filament located between the two massive clusters of galaxies Abell 399 and Abell 401. Abell 399 (zz=0.0724) and Abell 401 (zz=0.0737) are expected to be in the initial phase of a cluster merger. In the region between the two clusters, we find a clear enhancement in the temperature of the filament plasma from 4 keV (expected value from a typical cluster temperature profile) to kTkT\sim6.5 keV. Our analysis also shows that filament plasma is present out to a radial distance of 15' (1.3 Mpc) from a line connecting the two clusters. The temperature profile is characterized by an almost flat radial shape with kTkT\sim6-7 keV within 10' or \sim0.8 Mpc. Across rr=8'~from the axis, the temperature of the filament plasma shows a drop from 6.3 keV to 5.1 keV, indicating the presence of a shock front. The Mach number based on the temperature drop is estimated to be M{\cal M}\sim1.3. We also successfully determined the abundance profile up to 15' (1.3 Mpc), showing an almost constant value (ZZ=0.3 solar) at the cluster outskirt. We estimated the Compton yy-parameter to be \sim14.5±1.3×106\pm1.3\times10^{-6}, which is in agreement with PlanckPlanck's results (14-17×106\times10^{-6} on the filament). The line of sight depth of the filament is ll\sim1.1 Mpc, indicating that the geometry of filament is likely a pancake shape rather than cylindrical. The total mass of the filamentary structure is \sim7.7×1013 M\times10^{13}~\rm M_{\odot}. We discuss a possible interpretation of the drop of X-ray emission at the rim of the filament, which was pushed out by the merging activity and formed by the accretion flow induced by the gravitational force of the filament.Comment: 8 pages, 8 figures, accepted for publication in A&

    Gamma rays of energy or = 10(15) eV from Cyg X-3

    Get PDF
    The experimental data of extensive air showers observed at Akeno have been analyzed to detect the gamma ray signal from Cyg X-3. After muon poor air showers are selected, the correlation of data acquisition time with 4.8 hours X-ray period is studied, giving the data concentration near the phase 0.6, the time of X-ray maximum. The probability that uniform backgrounds create the distribution is 0.2%. The time averaged integral gamma ray flux is estimated as (1.1 + or - 0.4)x 10 to the -14th power cm(-2) sec(-1) for Eo 10 to the 15th power eV and (8.8 + or - 5.0)x 10 to the 14th power cm(-2) sec(-1) for Eo 6 x 10 to the 14th power eV

    Magnetic monopole search by 130 m(2)sr He gas proportional counter

    Get PDF
    A search experiment for cosmic ray magnetic monopoles was performed by means of atomic induction mechanism by using He mixture gas proportional counters of the calorimeter (130 square meters sr) at the center of the Akeno air shower array. In 3,482 hours operation no monopole candidate was observed. The upper limit of the monopole flux is 1.44 x 10 to the minus 13th power cm-z, sec -1, sr-1 (90% C.L.) for the velocity faster than 7 x 0.0001 c

    Properties of 10 (18)-10 (19)eV EAS at far core distance

    Get PDF
    The properties of 10 to the 18th power - 10 to the 19th power eV EAS showers such as the electron lateral distribution, the muon lateral distribution ( 1Gev), the ratio of muon density to a electron density, the shower front structure and the transition effects in scintillator of 5cm thickness are investigated with the Akeno 4 sq km/20sq km array at far core distances between 500m and 3000m. The fluctuation of densities and arrival time increase rapidly at core distances greater than 2km

    Measurement of energy muons in EAS at energy region larger thean 10(17) eV

    Get PDF
    A measurement of low energy muons in extensive air showers (EAS) (threshold energies are 0.25, 0.5, 0.75 and 1.38 GeV) was carried out. The density under the concrete shielding equivalent to 0.25 GeV at core distance less than 500 m and 0.5 GeV less than 150 m suffers contamination of electromagnetic components. Therefore the thickness of concrete shielding for muon detectors for the giant air shower array is determined to be 0.5 GeV equivalence. Effects of photoproduced muons are found to be negligible in the examined ranges of shower sizes and core distances. The fluctuation of the muon density in 90 sq m is at most 25% between 200 m and 600 m from the core around 10 to the 17th power eV

    Akeno 20 km (2) air shower array (Akeno Branch)

    Get PDF
    As the first stage of the future huge array, the Akeno air shower array was expanded to about 20 sq. km. by adding 19 scintillation detectors of 2.25 sq m area outside the present 1 sq. km. Akeno array with a new data collection system. These detectors are spaced about 1km from each other and connected by two optical fiber cables. This array has been in partial operation from 8th, Sep. 1984 and full operation from 20th, Dec. 1984. 20 sq m muon stations are planned to be set with 2km separation and one of them is now under construction. The origin of the highest energy cosmic rays is studied

    Development of Atmospheric Monitoring System at Akeno Observatory for the Telescope Array Project

    Get PDF
    We have developed an atmospheric monitoring system for the Telescope Array experiment at Akeno Observatory. It consists of a Nd:YAG laser with an alt-azimuth shooting system and a small light receiver. This system is installed inside an air conditioned weather-proof dome. All parts, including the dome, laser, shooter, receiver, and optical devices are fully controlled by a personal computer utilizing the Linux operating system. It is now operated as a back-scattering LIDAR System. For the Telescope Array experiment, to estimate energy reliably and to obtain the correct shower development profile, the light transmittance in the atmosphere needs to be calibrated with high accuracy. Based on observational results using this monitoring system, we consider this LIDAR to be a very powerful technique for Telescope Array experiments. The details of this system and its atmospheric monitoring technique will be discussed.Comment: 24 pages, 13 figures(plus 3 gif files), Published in NIM-A Vol.488, August 200

    Recent progress of GaAsP HPD development for the MAGIC telescope project

    Full text link
    Today the Hybrid Photon Detector (HPD) is one of the few low light level (LLL) sensors that can provide an excellent single and multiple photoelectron (ph.e.) amplitude resolution. The recently developed HPDs for the MAGIC telescope project with a GaAsP photocathode, namely the R9792U-40, provide a peak quantum efficiency (QE) of more than 50% and a pulse width of ~2 nsec. In addition, the afterpulsing rate of these tubes is very low compared to that of conventional photomultiplier tubes (PMTs), i.e. the value is ~300 times lower. Photocathode aging measurements showed life time of more than 10 years under standard operating conditions of the Cherenkov Telescopes. Here we want to report on the recent progress with the above mentioned HPDs.Comment: Contribution to the 30th ICRC, Merida Mexico, July 2007 on behalf of the MAGIC Collaboratio
    corecore